Video Analytics for Railroad Safety Research: An Artificial Intelligence Approach

Author:

Zaman Asim1,Liu Xiang1,Zhang Zhipeng1

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Rutgers, NJ

Abstract

The volume of video data in the railroad industry has increased significantly in recent years. Surveillance cameras are situated on nearly every part of the railroad system, such as inside the cab, along the track, at grade crossings, and in stations. These camera systems are manually monitored, either live or subsequently reviewed in an archive, which requires an immense amount of human resources. To make the video analysis much less labor-intensive, this paper develops a framework for utilizing artificial intelligence (AI) technologies for the extraction of useful information from these big video datasets. This framework has been implemented based on the video data from one grade crossing in New Jersey. The AI algorithm can automatically detect unsafe trespassing of railroad tracks (called near-miss events in this paper). To date, the AI algorithm has analyzed hours of video data and correctly detected all near-misses. This pilot study indicates the promise of using AI for automated analysis of railroad video big data, thereby supporting data-driven railroad safety research. For practical use, our AI algorithm has been packaged into a computer-aided decision support tool (named AI-Grade) that outputs near-miss video clips based on user-provided raw video data. This paper and its sequent studies aim to provide the railroad industry with next-generation big data analysis methods and tools for quickly and reliably processing large volumes of video data in order to better understand human factors in railroad safety research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference26 articles.

1. Near-Miss Incident Management in the Chemical Process Industry

2. Ngamdung T., daSilva M. Driver Behavior Analysis at Highway–Rail Grade Crossings using Field Operational Test Data: Light Vehicles. DOT/FRA/ORD-13/28. Federal Transit Administration, U.S. Department of Transportation, Washington, D.C., 2013.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3