Affiliation:
1. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Rutgers, NJ
Abstract
The volume of video data in the railroad industry has increased significantly in recent years. Surveillance cameras are situated on nearly every part of the railroad system, such as inside the cab, along the track, at grade crossings, and in stations. These camera systems are manually monitored, either live or subsequently reviewed in an archive, which requires an immense amount of human resources. To make the video analysis much less labor-intensive, this paper develops a framework for utilizing artificial intelligence (AI) technologies for the extraction of useful information from these big video datasets. This framework has been implemented based on the video data from one grade crossing in New Jersey. The AI algorithm can automatically detect unsafe trespassing of railroad tracks (called near-miss events in this paper). To date, the AI algorithm has analyzed hours of video data and correctly detected all near-misses. This pilot study indicates the promise of using AI for automated analysis of railroad video big data, thereby supporting data-driven railroad safety research. For practical use, our AI algorithm has been packaged into a computer-aided decision support tool (named AI-Grade) that outputs near-miss video clips based on user-provided raw video data. This paper and its sequent studies aim to provide the railroad industry with next-generation big data analysis methods and tools for quickly and reliably processing large volumes of video data in order to better understand human factors in railroad safety research.
Subject
Mechanical Engineering,Civil and Structural Engineering
Reference26 articles.
1. Near-Miss Incident Management in the Chemical Process Industry
2. Ngamdung T., daSilva M. Driver Behavior Analysis at Highway–Rail Grade Crossings using Field Operational Test Data: Light Vehicles. DOT/FRA/ORD-13/28. Federal Transit Administration, U.S. Department of Transportation, Washington, D.C., 2013.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献