A Deep Learning Approach of Intrusion Detection and Tracking with UAV-Based 360° Camera and 3-Axis Gimbal

Author:

Xu Yao1,Liu Yunxiao1,Li Han1,Wang Liangxiu1,Ai Jianliang1

Affiliation:

1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

Abstract

Intrusion detection is often used in scenarios such as airports and essential facilities. Based on UAVs equipped with optical payloads, intrusion detection from an aerial perspective can be realized. However, due to the limited field of view of the camera, it is difficult to achieve large-scale continuous tracking of intrusion targets. In this study, we proposed an intrusion target detection and tracking method based on the fusion of a 360° panoramic camera and a 3-axis gimbal, and designed a detection model covering five types of intrusion targets. During the research process, the multi-rotor UAV platform was built. Then, based on a field flight test, 3043 flight images taken by a 360° panoramic camera and a 3-axis gimbal in various environments were collected, and an intrusion data set was produced. Subsequently, considering the applicability of the YOLO model in intrusion target detection, this paper proposes an improved YOLOv5s-360ID model based on the original YOLOv5-s model. This model improved and optimized the anchor box of the YOLOv5-s model according to the characteristics of the intrusion target. It used the K-Means++ clustering algorithm to regain the anchor box that matches the small target detection task. It also introduced the EIoU loss function to replace the original CIoU loss function. The target bounding box regression loss function made the intrusion target detection model more efficient while ensuring high detection accuracy. The performance of the UAV platform was assessed using the detection model to complete the test flight verification in an actual scene. The experimental results showed that the mean average precision (mAP) of the YOLOv5s-360ID was 75.2%, which is better than the original YOLOv5-s model of 72.4%, and the real-time detection frame rate of the intrusion detection was 31 FPS, which validated the real-time performance of the detection model. The gimbal tracking control algorithm for intrusion targets is also validated. The experimental results demonstrate that the system can enhance intrusion targets’ detection and tracking range.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3