Demand Calibration of Multimodal Microscopic Traffic Simulation using Weighted Discrete SPSA

Author:

Oh Simon1,Seshadri Ravi1,Azevedo Carlos Lima2,Ben-Akiva Moshe E.3

Affiliation:

1. Singapore-MIT Alliance for Research and Technology, Singapore

2. Department of Management Engineering, Technical University of Denmark, Lyngby, Denmark

3. Massachusetts Institute of Technology, Cambridge, MA

Abstract

This paper presents a stochastic approximation framework to solve a generalized problem of off-line calibration of demand for a multimodal microscopic (or mesoscopic) network simulation using aggregated sensor data. A key feature of this problem is that demand, although typically treated as a continuous variable is in fact discrete, particularly in the context of agent-based simulation. To address this, we first use a discrete version of the weighted simultaneous perturbation stochastic approximation (W-DSPSA) algorithm for minimizing a generalized least squares (GLS) objective (that measures the distance between simulated and observed measurements), defined over discrete sets. The algorithm computes the gradient at each iteration using a symmetric discrete perturbation of the calibration parameters and a multimodal weight matrix to improve the accuracy of the gradient estimate. The W-DSPSA algorithm is then applied to the large-scale calibration of multimodal origin–destination (OD) flows (including private vehicle (PVT) and public transit (PT) trips) in a microscopic network simulation model of Singapore. The results indicate that an acceptable margin of error on the vehicle loop count (VLC) and bus passenger count (BPC) are achieved at convergence with an improvement of 60%~80% in root mean squared errors. Lastly, we validate the calibration results with observed travel times on the network. Statistical comparison shows good agreements on both point-to-point travel time (PTT) and public buses’ stop-to-stop ride-time (SRT) with the field observations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3