Short-Term Performance Characterization and Fatigue Damage Prediction of Asphalt Mixtures Containing Polymer-Modified Binders and Recycled Plastics

Author:

Yin Fan1ORCID,West Randy1ORCID,Powell Buzz1ORCID,DuBois C.J.2ORCID

Affiliation:

1. National Center for Asphalt Technology, Auburn University, Auburn, AL

2. Dow Inc., Packaging and Specialty Plastics, Lake Jackson, TX

Abstract

This study evaluated the short-term performance properties and predicted cracking performance of asphalt mixtures containing polymer-modified asphalt (PMA) binders and recycled polyethylene (RPE). To that end, binder rheological testing, mixture performance testing, and FlexPAVE simulations were conducted. Furthermore, three PMA mixtures were selected for field evaluation on the National Center for Asphalt Technology Test Track and rapid performance testing during production. The PMA binders modified with styrene-butadiene-styrene (SBS), reactive elastomeric terpolymer (RET), and RET-compatibilized RPE had significantly improved elasticity and rutting resistance compared with the unmodified binder. The PMA binders also exhibited good storage stability with minimal separation tendency. Both polymer modification of the asphalt binder and adding RPE via the dry process improved the rutting resistance of the mixture. Although the unmodified and PMA mixtures exhibited notably different load-versus-displacement curves from the Indirect Tensile Asphalt Cracking Test (IDEAL-CT), they had similar cracking tolerance index ( CTindex) results. The Gf-versus- l75 /m75 interaction diagram allowed a more robust understanding of the IDEAL-CT results by considering mixture toughness and brittleness, and their interactions with CTindex. In all cases, polymer modification increased the stiffness and fatigue damage resistance of asphalt mixtures, while adding RPE via the dry process embrittled the mixtures, making them more susceptible to fatigue damage. The PMA mixtures had significantly better predicted cracking performance in FlexPAVE simulations than the unmodified mixture. This improvement was mainly caused by polymer modification of the asphalt binder. Finally, adding dry RPE pellets improved the rutting resistance but reduced the intermediate-temperature cracking resistance of the plant-produced PMA mixture containing an SBS-modified binder.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the impact of variability in the source of waste polyethylene on the design of plastic modified asphalt mixtures;Construction and Building Materials;2024-09

2. Establishing Strategies to Improve Cracking Resistance of High Recycled Binder Ratio Asphalt Mixtures;Transportation Research Record: Journal of the Transportation Research Board;2024-05-09

3. Performance Assessment of High Reclaimed Asphalt Pavement Asphalt Mixtures with Recycling Agents;Transportation Research Record: Journal of the Transportation Research Board;2024-04-03

4. Model for Evaluating Cracking Performance of Asphalt Pavements with Field Aging Based on IDEAL-CT Parameters;Transportation Research Record: Journal of the Transportation Research Board;2024-03-27

5. Towards a use of waste polyethylene in asphalt mixture as a compaction aid;Journal of Cleaner Production;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3