Establishing Strategies to Improve Cracking Resistance of High Recycled Binder Ratio Asphalt Mixtures

Author:

Bairgi Biswajit Kumar1,Verma Madhav1ORCID,Tran Nam1ORCID,Yin Fan1ORCID,Moraes Raquel1ORCID,Rodezno Carolina1ORCID,Martin Amy Epps2ORCID,Montañez Juliana2ORCID,Arámbula-Mercado Edith3ORCID

Affiliation:

1. National Center for Asphalt Technology, Auburn University, Auburn, AL

2. Texas A&M Transportation Institute, Texas A&M University, College Station, TX

3. Texas A&M Transportation Institute, Texas A&M University, Bryan, TX

Abstract

This study aims to investigate promising mitigation strategies for improving the cracking performance of high recycled binder ratio (RBR) asphalt mixtures. Moisture-resistant aggregates that do not require anti-stripping agents, reclaimed asphalt pavement (RAP), and recycled asphalt shingles (RAS) were sampled for this study from sources in two climatic zones, south and north. The south-moisture-resistant (SR) mixtures were designed with 0.16 and 0.29 RBRs with RAP, while the north-moisture-resistant (NR) mixtures included 0.21 and 0.37 RBRs with RAP and 0.44 RBR with RAP/RAS. The mitigation strategies evaluated included a softer binder, a different binder source with higher ΔTc, a recycling agent (RA), reduced recycled binder availability (RBA), polymer-modified asphalt (PMA), and hybrid approaches including softer binder + RBA and PMA+RBA. The Indirect Tensile Asphalt Cracking Test (IDEAL-CT) and Disc-Shaped Compact Tension (DCT) test were conducted to capture intermediate-temperature and low-temperature cracking performance, respectively. In addition to the cracking tolerance index (CTindex), an IDEAL-CT interaction diagram analysis was added to further understanding the effect of mixture variables on cracking performance. The findings suggest that while no single strategy works for all RBR mixtures tested, RA, RBA, softer binder, or their combinations yield adequate cracking performance depending on factors including RAP binder stiffness and quantity, RA dose, climatic zone, and RBA.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3