Fuzzy Inference Model for Railway Track Buckling Prediction

Author:

Słodczyk Iwo1ORCID,Fletcher David1ORCID,Gitman Inna2ORCID,Whitney Brian3

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. Department of Mechanics of Solids, Surfaces and Systems, University of Twente, Enschede, Netherlands

3. Network Rail, Milton Keynes, UK

Abstract

The application of rail buckling models is often limited by uncertain information with respect to track properties, and many conventional models are poorly suited to network-wide or even regional application. Here, a methodology using fuzzy sets is presented that, when trained using buckling data can use inputs of track properties to predict the minimum buckling temperature increase for a particular track. An investigation of the impact of the size of training data and the influence of key track parameters on the minimum buckling temperature increase was conducted, and it was found that a high level of influence stems from the sleeper spacing and fastener torsional resistance parameters. The model was shown to give a low prediction error even for small dataset sizes of training data. The results of this work show the efficacy of a fuzzy sets based model when applied to track buckling prediction data, giving both a low error and rapid calculation times. The approach has potential for application for a wider array of variables, such as track geometry and vehicle dynamics, and is not limited to the study of track buckling owing to the flexibility of the fuzzy inference methodology.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference30 articles.

1. Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south-east United Kingdom

2. Network Rail. Red Weather Warning - East Coast Main Line to Close. July 2022. https://www.networkrail.co.uk/stories/red-weather-warning-east-coast-main-line-to-close/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3