Heterogeneity Analysis of Operating Mode Distribution for Modeling Energy Consumption of Light-Duty Vehicles

Author:

Zhang Leqi1,Song Guohua1ORCID,Zhang Zeyu1ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing, China

Abstract

The use of vehicle operating mode (OpMode) distribution is widely accepted for estimating energy consumption and emissions in the Motor Vehicle Emission Simulator (MOVES) model. However, the heterogeneity of driving behavior may lead to errors when using the default OpMode distribution. To improve the accuracy of energy consumption estimations, it is necessary to recognize the heterogeneity in OpMode distribution among different driving behaviors. With this aim, this paper designs a speed-specific indicator of energy efficiency reflecting driving behavior based on the speed-specific vehicle-specific power (VSP) distribution. The paper uses field data from 26,082 drivers recorded second by second during workdays. It also discusses the intra-heterogeneity and inter-heterogeneity of driving behavior based on unsupervised algorithm clustering. The findings of this paper are as follows. (1) The speed-specific VSP distribution clearly reflects the differences in energy efficiency of individuals’ driving behavior. (2) The energy efficiency indicator reflects the multidimensional inter-heterogeneity and intra-heterogeneity of driving behavior. (3) Drivers’ varied driving behavior causes heterogeneity in energy efficiency at different speeds, possibly causing an error of 6.34% in the emissions estimations. (4) Drivers of electric vehicles (EVs) and hybrid electric vehicles (HEVs) show more aggressive driving behaviors than drivers of conventional vehicles (CVs), which may cause an energy estimation error of over 6% for EVs and HEVs. Thus, the OpMode distribution of EVs, HEVs, and CVs should be modeled separately for on-road energy estimations.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3