A fuel consumption-based method for developing local-specific CO2 emission rate database using open-source big data

Author:

Li Linheng,Wang Can,Gan Jing,Zhang Dapeng

Abstract

AbstractEmission data collection has always been a significant burden and challenge for Chinese counties to develop a CO2 emission inventory. This paper proposed a fuel consumption-based method to develop a local-specific CO2 emission rate database for Chinese counties using only open-source big data. Localized vehicle fuel consumption data is obtained through natural language processing (NLP) algorithm and large language model (LLM). The emission rates derived by our proposed method are consistent with field test results in literature. Besides, the CO2 emission estimation results using local-specific traffic activity data indicate that our method could effectively improve the accuracy of vehicle emission assessment. Compared with conventional method, the novel approach proposed in this paper can provide a pathway for convenient, universal, and cost-saving assessment for local scale CO2 emission rates. With this method, it is possible to formulate a local-specific CO2 emission database in various Chinese counties using only open-access big data.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3