Prediction and Mitigation of Flow Breakdown Occurrence for Weather Affected Networks: Case Study of Chicago, Illinois

Author:

Filipovska Monika1,Mahmassani Hani S.1,Mittal Archak1

Affiliation:

1. Transportation Center, Northwestern University, Evanston, IL

Abstract

This study investigates the prediction and mitigation of the phenomenon of traffic flow breakdown when affected by varying weather conditions. First, the probability of breakdown occurrence is examined using a survival analysis approach to obtain distributions of pre-breakdown flow rates under different weather conditions. Second, pre-breakdown flow rate distributions were applied in breakdown prediction for the implementation of breakdown mitigation strategies. In the first part, a set of data from the network of Kansas City was used to demonstrate the applicability of the Kaplan–Meier Product Limit method to estimating the breakdown probability under various weather conditions. Then, using simulated data on the network of Chicago, the K-M approach was used again to obtain survival likelihood distributions, which in turn yield breakdown probability, for 13 different weather cases as combinations of weather categories for different levels of visibility, rain, and snow precipitation. In the second part, continuing with the simulated data, dynamic speed limits (DSL) were applied to demonstrate the effectiveness of the prediction method presented. A sensitivity analysis of the threshold probability and upstream distance at which DSL should be implemented was performed for clear and inclement weather conditions. In clear weather the performance of the strategy is better at a lower probability threshold and farther upstream location, whereas in inclement weather the performance is better at a lower probability threshold and closer upstream location. The paper demonstrates the effect of changing weather conditions on the likelihood of breakdown occurrence and the implementation of breakdown mitigation strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Networkwide Traffic State Forecasting Using Exogenous Information: A Multi-Dimensional Graph Attention-Based Approach;Transportation Research Record: Journal of the Transportation Research Board;2024-05-16

2. Predictive Speed Harmonization Using Machine Learning in Traffic Flow with Connected and Automated Vehicles;Transportation Research Record: Journal of the Transportation Research Board;2023-07-22

3. Leveraging vehicle connectivity and autonomy for highway bottleneck congestion mitigation using reinforcement learning;Transportmetrica A: Transport Science;2023-05-25

4. Emerging transportation innovations: Promises and pitfalls;Innovation and Emerging Technologies;2022-01

5. Improving Short-Term Travel Speed Prediction with High-Resolution Spatial and Temporal Rainfall Data;Journal of Transportation Engineering, Part A: Systems;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3