Redevelopment of Artificial Neural Networks for Predicting the Response of Bonded Concrete Overlays of Asphalt for use in a Faulting Prediction Model

Author:

DeSantis John W.1,Vandenbossche Julie M.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA

Abstract

Transverse joint faulting is a common distress in bonded concrete overlays of asphalt pavements (BCOAs), also known as whitetopping. However, to date, there is no predictive faulting model available for these structures. Therefore, the intended research is to develop a predictive faulting model for BCOAs. In addition, it is important to be able to account for conditions unique to BCOA when characterizing the response in a faulting prediction model. To address this, computational models were developed using a three-dimensional finite element program, ABAQUS, to accurately predict the response of these structures. These models account for different depths of joint activation, as well as full and partial bonding between the concrete overlay and existing asphalt pavement. The models were validated with falling weight deflectometer (FWD) data from existing field sections at the Minnesota Road Research Facility (MnROAD) as well as at the University of California Pavement Research Center (UCPRC). A fractional factorial analysis was executed using the computational models to generate a database to be used in the development of the predictive models. The predictive models, based on artificial neural networks (ANNs), are used to rapidly estimate the structural response at the joint in BCOA to environmental and traffic loads so that these responses can be incorporated into the design process. The structural response obtained using the ANNs is related to damage using the differential energy concept. Future work includes the implementation of the ANNs developed in this study into a faulting prediction model for designing BCOA.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3