Abstract
PurposeThe time-varying equivalent linear temperature gradient (ELTG) significantly affects the development of faulting and must therefore be accounted for in pavement design. The same is true for faulting of bonded concrete overlays of asphalt (BCOA) with slabs larger than 3 x 3 m. However, the evaluation of ELTG in Mechanistic-Empirical (ME) BCOA design is highly time-consuming. The use of an effective ELTG (EELTG) is an efficient alternative to calculating ELTG. In this study, a model to quickly evaluate EELTG was developed for faulting in BCOA for panels 3 m or longer in size, whose faulting is sensitive to ELTG.Design/methodology/approachA database of EELTG responses was generated for 144 BCOAs at 169 locations throughout the continental United States, which was used to develop a series of prediction models. Three methods were evaluated: multiple linear regression (MLR), artificial neural networks (ANNs), and multi-gene genetic programming (MGGP). The performance of each method was compared, considering both accuracy and model complexity.FindingsIt was shown that ANNs display the highest accuracy, with an R2 of 0.90 on the validation dataset. MLR and MGGP models achieved R2 of 0.73 and 0.71, respectively. However, these models consisted of far fewer free parameters as compared to the ANNs. The model comparison performed in this study highlights the need for researchers to consider the complexity of models so that their direct implementation is feasible.Originality/valueThis research produced a rapid EELTG prediction model for BCOAs that can be incorporated into the existing faulting model framework.