Non-Intrusive Detection of Drowsy Driving Based on Eye Tracking Data

Author:

Zandi Ali Shahidi1,Quddus Azhar1,Prest Laura1,Comeau Felix J. E.1

Affiliation:

1. Alcohol Countermeasure Systems Corp. (ACS), Toronto, ON, Canada

Abstract

Drowsy driving is one of the leading causes of motor vehicle accidents in North America. This paper presents the use of eye tracking data as a non-intrusive measure of driver behavior for detection of drowsiness. Eye tracking data were acquired from 53 subjects in a simulated driving experiment, whereas the simultaneously recorded multichannel electroencephalogram (EEG) signals were used as the baseline. A random forest (RF) and a non-linear support vector machine (SVM) were employed for binary classification of the state of vigilance. Different lengths of eye tracking epoch were selected for feature extraction, and the performance of each classifier was investigated for every epoch length. Results revealed a high accuracy for the RF classifier in the range of 88.37% to 91.18% across all epoch lengths, outperforming the SVM with 77.12% to 82.62% accuracy. A feature analysis approach was presented and top eye tracking features for drowsiness detection were identified. Altogether, this study showed a high correspondence between the extracted eye tracking features and EEG as a physiological measure of vigilance and verified the potential of these features along with a proper classification technique, such as the RF, for non-intrusive long-term assessment of drowsiness in drivers. This research would ultimately lead to development of technologies for real-time assessment of the state of vigilance, providing early warning of fatigue and drowsiness in drivers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference47 articles.

1. Fatigue, Sleep Restriction, and Performance in Automobile Drivers: A Controlled Study in a Natural Environment

2. Driving performance and EEG fluctuations during on-the-road driving following sleep deprivation

3. National Highway Traffic Safety Administration. Asleep at the Wheel: A National Compendium of Efforts to Eliminate Drowsy Driving. U.S. Department of Transportation, Washington, D.C., 2017, pp. 1–24.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3