Application of LiDAR and Connected Vehicle Data to Evaluate the Impact of Work Zone Geometry on Freeway Traffic Operations

Author:

Mekker Michelle M.1,Lin Yun-Jou1,Elbahnasawy Magdy K. I.1,Shamseldin Tamer S. A.1,Li Howell1,Habib Ayman F.1,Bullock Darcy M.1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

Extensive literature exists regarding recommendations for lane widths, merging tapers, and work zone geometry to provide safe and efficient traffic operations. However, it is often infeasible or unsafe for inspectors to check these geometric features in a freeway work zone. This paper discusses the integration of LiDAR (Light Detection And Ranging)-generated geometric data with connected vehicle speed data to evaluate the impact of work zone geometry on traffic operations. Connected vehicle speed data can be used at both a system-wide (statewide) or segment-level view to identify periods of congestion and queueing. Examples of regional trends, localized incidents, and recurring bottlenecks are shown in the data in this paper. A LiDAR-mounted vehicle was deployed to a variety of work zones where recurring bottlenecks were identified to collect geometric data. In total, 350 directional miles were covered, resulting in approximately 360 GB of data. Two case studies, where geometric anomalies were identified, are discussed in this paper: a short segment with a narrow lane width of 10–10.5 feet and a merging taper that was about 200 feet shorter than recommended by the Manual on Uniform Traffic Control Devices. In both case studies, these work zone features did not conform to project specifications but were difficult to assess safely by an inspector in the field because of the high volume of traffic. The paper concludes by recommending the use of connected vehicle data to systematically identify work zones with recurring congestion and the use of LiDAR to assess work zone geometrics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3