Measuring Roadway Lane Widths Using Connected Vehicle Sensor Data

Author:

Mahlberg Justin A.ORCID,Li HowellORCID,Cheng Yi-TingORCID,Habib AymanORCID,Bullock Darcy M.ORCID

Abstract

The United States has over three trillion vehicle miles of travel annually on over four million miles of public roadways, which require regular maintenance. To maintain and improve these facilities, agencies often temporarily close lanes, reconfigure lane geometry, or completely close the road depending on the scope of the construction project. Lane widths of less than 11 feet in construction zones can impact highway capacity and crash rates. Crash data can be used to identify locations where the road geometry could be improved. However, this is a manual process that does not scale well. This paper describes findings for using data from onboard sensors in production vehicles for measuring lane widths. Over 200 miles of roadway on US-52, US-41, and I-65 in Indiana were measured using vehicle sensor data and compared with mobile LiDAR point clouds as ground truth and had a root mean square error of approximately 0.24 feet. The novelty of these results is that vehicle sensors can identify when work zones use lane widths substantially narrower than the 11 foot standard at a network level and can be used to aid in the inspection and verification of construction specification conformity. This information would contribute to the construction inspection performed by agencies in a safer, more efficient way.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference25 articles.

1. Alternative Fuels Data Center: Maps and Data-Annual Vehicle Miles Traveled in the United States;US Department of Energy

2. FHWA Work Zone Facts and Statistics;Transportation, US Department of Transportation

3. Safety sensitivity to roadway characteristics: A comparison across highway classes

4. Effect of Lane Width, Shoulder Width, and Shoulder Type on Highway Safety;Zegeer;State Art Rep.,1987

5. Mitigation Strategies for Design Exceptions-Safety;US Department of Transportation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3