Advantages of Geophysics to Improve Site Characterization and Reliability for Transportation Projects

Author:

Rahimi Salman1,Wood Clinton M.1,Kokkali Panagiota (Yota)2,Rivers Benjamin3

Affiliation:

1. Department of Civil Engineering, University of Arkansas at Fayetteville, Fayetteville, AR

2. WSP Global Inc., New York, NY

3. Federal Highway Administration Resource Center, Atlanta, GA

Abstract

Under the Federal Highway Administration’s innovation development program “Every Day Counts” (EDC-5), the initiative on Advanced Geotechnical Methods in Exploration (A-GaME) aims to improve the knowledge in U.S. practice on existing but underutilized subsurface exploration methods. The A-GaME suite of technologies is a group of proven and effective exploration technologies and practices that, in conjunction with limited conventional exploration methods, mitigate the risks of geotechnical uncertainties and optimize subsurface exploration programs for improved site characterization and reliability over a wider coverage area and maximum return-on-investment. Transportation agencies are becoming more eager to employ alternative exploration methods to supplement their investigations and limit uncertainty emanating from geotechnical subsurface conditions. In this context, Arkansas Department of Transportation, in collaboration with the University of Arkansas, has implemented geophysical methods in subsurface investigation to acquire adequate information in relation to bedrock depth and rippability for new construction and to address slope stability issues along roadways. Different geophysical methods have been employed, including multichannel analysis of surface waves (MASW), electrical resistivity tomography (ERT), and microtremor horizontal to vertical spectral ratio (MHVSR). Two case studies are presented here, one for a proposed and one for an existing transportation project. According to the results of these case histories, the joint application of MASW and MHVSR was determined to be valuable for rock rippability estimates for roadway projects, whereas the combined use of MASW, MHVSR, and ERT produced significant additional subsurface information for landslide assessments and remediation efforts.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3