Pavement Fatigue Damage Simulations Using Second-Generation Mechanistic-Empirical Approaches

Author:

Hernandez-Fernandez Noe1,Harvey John T.2ORCID,Underwood Benjamin Shane3ORCID,Ossa-Lopez Alexandra1ORCID

Affiliation:

1. Institute of Engineering, Universidad Nacional Autónoma de México, Mexico City, Mexico

2. University of California Pavement Research Center, University of California at Davis, Davis, CA

3. Department of Construction and Environmental Engineering, North Carolina State University, Raleigh, NC

Abstract

This article aims to demonstrate the advanced features of two second-generation mechanistic-empirical (ME) pavement analysis engines by focusing on their ability to conduct fatigue performance analysis. First, a comprehensive review is presented of both mechanistic and empirical damage models, underlining the additional features of CalME and FlexPAVE™ over AASHTOWare Pavement ME Design. Then, the capabilities of these methodologies are demonstrated by simulating the fatigue damage performance of an example study section. For these simulations the mechanical properties of four asphalt concrete mixtures, assembled in the laboratory with similar mix design attributes but diverse fatigue characteristics, were utilized. The empirical transfer functions were initially calibrated against field cracking for the unmodified mixture cracking predictions. After that, fatigue damage simulations for the other three mixtures were performed. The results showed a similar ranking in fatigue cracking performance for both software simulations. Polymer-modified mixtures exhibited higher fatigue cracking resistance, whereas the unmodified mixture showed the worst cracking resistance. However, significant differences in cracking initiation and progression rates were observed for all mixture simulations before and after calibration. This discrepancy was related to the different approaches to considering traffic loads in each software system, single axle in FlexPAVE™ and axle spectrum in CalME. Finally, current, and future enhancements for both analysis engines are briefly discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3