Assessing Crash Occurrence on Urban Freeways by Applying a System of Interrelated Equations

Author:

Abdel-Aty Mohamed1,Pemmanaboina Rajashekar1,Hsia Liang2

Affiliation:

1. Department of Civil and Environmental Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450

2. Florida Department of Transportation, 605 Suwannee Street, MS-90, Tallahassee, FL 32399-0450

Abstract

Most existing freeway crash frequency models analyze overall frequency of crashes. Furthermore, researchers have traditionally used average annual daily traffic (AADT) to represent traffic volume in their models. These two cases are examples of macroscopic crash frequency modeling. Segregating crashes on the basis of type of crash, peak or off-peak traffic conditions, lighting conditions, severity, and pavement condition could provide insight into the specific factors that affect each category. In this study multiple binary categorizations of the crashes were created to identify the factors associated with their frequencies and used geometric characteristics of the freeway and microscopic traffic variables that were based on loop detector data. These categorizations included multiple- and single-vehicle crashes, peak period and off peak period crashes, dry and wet pavement crashes, daytime and dark-hour crashes, and property-damage-only and injury crashes. Models for frequency of each of the two groups of crashes were estimated separately for all five categorizations. To account for correlation between the disturbance terms arising from omitted variables between any two models in a category, seemingly unrelated negative binomial (SUNB) regression was used for simultaneous estimation. SUNB estimation proved to be advantageous for multiple- and single-vehicle crashes and for daytime and dark-hour crashes. Road curvature and presence of on- or off-ramps were found to be the significant factors related to every crash category. Median type and pavement surface type were among other important factors affecting crashes. AADT was significant in most models and the 15-min coefficient of variation of speed was significant for frequency of daytime and peak period crashes. SUNB estimation proved to increase the efficiency of the crash frequency models by accounting for the disturbance correlation, reducing the standard errors, and providing better model fit.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3