On Assignment to Classes in Latent Class Logit Models

Author:

Wu Wangwei1ORCID,Daziano Ricardo A.2ORCID

Affiliation:

1. Systems Engineering, Cornell University, NY

2. Civil and Environmental Engineering, Cornell University, NY

Abstract

Random parameter logit models address unobserved preference heterogeneity in discrete choice analysis. The latent class logit model assumes a discrete heterogeneity distribution, by combining a conditional logit model of economic choices with a multinomial logit (MNL) for stochastic assignment to classes. Whereas point estimation of latent class logit models is widely applied in practice, stochastic assignment of individuals to classes needs further analysis. In this paper we analyze the statistical behavior of six competing class assignment strategies, namely: maximum prior MNL probabilities, class drawn from prior MNL probabilities, maximum posterior assignment, drawn posterior assignment, conditional individual-specific estimates, and conditional individual estimates combined with the Krinsky–Robb method to account for uncertainty. Using both a Monte Carlo study and two empirical case studies, we show that assigning individuals to classes based on maximum MNL probabilities behaves better than randomly drawn classes in market share predictions. However, randomly drawn classes have higher accuracy in predicted class shares. Finally, class assignment based on individual-level conditional estimates that account for the sampling distribution of the assignment parameters shows superior behavior for a larger number of choice occasions per individual.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3