Affiliation:
1. Department of Transport and Planning, Delft University of Technology, Delft, Netherlands
Abstract
Lane drops are a common bottleneck source on motorway networks. Congestion sets in upstream of a lane drop as a result of the lane changing activity of merging vehicles. This causes the queue discharge rate at the bottleneck to decrease and drop below the capacity, leading to capacity drop and further congestion. The objective of this study is to minimize the total travel time of the system by controlling lateral flows upstream of the lane drop. This is equivalent to maximizing the exit flows at the bottleneck. An optimization problem is formulated for a 3–2 lane drop section with high inflow. The problem is solved for different test cases where the direction of lateral flows being controlled is varied. An incentive based macroscopic model representing the natural lane changing scenario is used as a benchmark for comparison. The results showed that by influencing the lateral flows upstream of the bottleneck, the queue discharge rate increased by more than 4.5%. The total travel time of the system was consequently found to be reduced. The improvements in performance were primarily a result of the distribution of lane changing activity over space and the balancing of flow among the lanes which lead to the decrease in the severity of congestion. The findings reveal a potentially effective way to reduce the severity of congestion upstream of lane drop bottlenecks during high demand which could be implemented using roadside and in-car advisory systems.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献