Estimating Express Train Preference of Urban Railway Passengers Based on Extreme Gradient Boosting (XGBoost) using Smart Card Data

Author:

Hak Lee Eun1,Kim Kyoungtae2,Kho Seung-Young1,Kim Dong-Kyu1,Cho Shin-Hyung3

Affiliation:

1. Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Gwanak-gu, Seoul, South Korea

2. Future Transport Policy Research Division, Korea Railroad Research Institute, Uiwang-si, Gyeonggi-do, South Korea

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Abstract

As the share of public transport increases, the express strategy of the urban railway is regarded as one of the solutions that allow the public transportation system to operate efficiently. It is crucial to express the urban railway’s express strategy to balance a passenger load between the two types of trains, that is, local and express trains. This research aims to estimate passengers’ preference between local and express trains based on a machine learning technique. Extreme gradient boosting (XGBoost) is trained to model express train preference using smart card and train log data. The passengers are categorized into four types according to their preference for the local and express trains. The smart card data and train log data of Metro Line 9 in Seoul are combined to generate the individual trip chain alternatives for each passenger. With the dataset, the train preference is estimated by XGBoost, and Shapley additive explanations (SHAP) is used to interpret and analyze the importance of individual features. The overall F1 score of the model is estimated to be 0.982. The results of feature analysis show that the total travel time of the local train feature is found to substantially affect the probability of express train preference with a 1.871 SHAP value. As a result, the probability of the express train preference increases with longer total travel time, shorter in-vehicle time, shorter waiting time, and few transfers on the passenger’s route. The model shows notable performance in accuracy and provided an understanding of the estimation results.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3