Do Larger Sample Sizes Increase the Reliability of Traffic Incident Duration Models? A Case Study of East Tennessee Incidents

Author:

Zhang Zihe1,Liu Jun1,Li Xiaobing2,Khattak Asad J.3

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL

2. Alabama Transportation Institute, The University of Alabama, Tuscaloosa, AL

3. Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN

Abstract

Incident duration models are often developed to assist incident management and traveler information dissemination. With recent advances in data collection and management, enormous achieved incident data are now available for incident model development. However, a large volume of data may present challenges to practitioners, such as data processing and computation. Besides, data that span multiple years may have inconsistency issues because of the data collection environments and procedures. A practical question may arise in the incident modeling community—Is that much data really necessary (“all-in”) to build models? If not, then how many data are necessary? To answer these questions, this study aims to investigate the relationship between the data sample sizes and the reliability of incident duration analysis models. This study proposed and demonstrated a sample size determination framework through a case study using data of over 47,000 incidents. This study estimated handfuls of hazard-based duration models with varying sample sizes. The relationships between sample size and model performance, along with estimate outcomes (i.e., coefficients and significance levels), were examined and visualized. The results showed that the variation of estimated coefficients decreases as the sample size increases, and becomes stabilized when the sample size reaches a critical threshold value. This critical threshold value may be the recommended sample size. The case study suggested a sample size of 6,500 to be enough for a reliable incident duration model. The critical value may vary significantly with different data and model specifications. More implications are discussed in the paper.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3