Operational Impact of the Through-Traffic Signal Prioritization for Heavy Commercial Vehicle Platooning on Urban Arterials

Author:

Chowdhury Tanvir1ORCID,Park Peter Y.1ORCID,Gingerich Kevin1

Affiliation:

1. Lassonde School of Engineering, Department of Civil Engineering, York University, Toronto, Ontario, Canada

Abstract

This study investigated the operational impact of heavy commercial vehicle (HCV) platooning on urban arterials. HCV platooning is an important application of vehicle-to-vehicle (V2V) technology, with urban arterials facilitating an essential component of HCV movements when picking up and delivering goods. HCV platooning has the potential to reduce fuel consumption and emissions. Moreover, the increasing HCV driver shortage problem can be alleviated if the vehicle following behind a lead vehicle can function without a driver by using autonomous technology enabling Society of Automotive Engineers Level 4 or higher. PTV VISSIM was used to develop a set of micro-simulation models that investigated the impact of traffic signal priority (TSP) and low levels (0%, 5%, and 10%) of HCV platooning. The performance measures include travel time and the number of stops. With the existing traffic control system, HCV platooning increased travel time and increased the number of stops for all vehicles including passenger cars and HCVs. TSP with 5% HCV platooning improved travel time and decreased the number of stops for all vehicles. TSP with 10% HCV platooning, however, only decreased travel time and the number of stops for passenger vehicles. The results suggest that a higher penetration rate of HCV platooning may create significant delays and overwhelm the traffic system even with the assistance of TSP. The findings of this study highlight the potential for TSP to mitigate the impact of HCV platooning on traffic congestion. However, the TSP system may not be a panacea that works for all traffic compositions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference71 articles.

1. Heavy-Duty Vehicle Platooning for Sustainable Freight Transportation: A Cooperative Method to Enhance Safety and Efficiency

2. Patten J., McAuliffe B., Mayda W., Tanguay B. Review of Aerodynamic Drag Reduction Devices for Heavy Trucks and Buses. NRC Technical Report CSTT-HVC-TR-205. National Research Council of Canada, Ottawa, ON, 2012, p. 3.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3