Hydrological response to land use land cover and climate variability, and simulation of sediment export and water yield in the catchment Kotri Sindh Pakistan using Soil and Water Assessment tool model

Author:

Chhachhar Rabia1ORCID,Abbasi Habibullah1

Affiliation:

1. Centre for Environmental Sciences, Faculty of Natural Sciences, University of Sindh, Jamshoro, Pakistan

Abstract

The water availability concerns have been increasing due to significant impacts of land use land cover change, and climate variability. In terms of developing countries, it is one of the biggest challenges to overcome and manage sustainability in the present and future. This study aims to evaluate the change in hydrological components and simulation of sediment yield and water yield on the large-scale basin of Kotri barrage with a change in runoff due to a change in land use land cover. This study has been done on the watershed as well as the sub-watershed level to have an accurate estimation and simulation by finding the response of hydrological components toward its natural and human-induced factors using the Soil and Water Assessment tool with high-resolution geospatial-temporal inputs over the Kotri catchment. The sediment and water yield were quantified using 42 years of simulation (1981–2022) on the sub-basin level, projected to land use land cover 1990, 2000, 2010, and 2022. The increase in deforestation, agriculture, and settlement areas resulted increase in sediment load in the catchment. The sub-basins 14, 11, 12, and 13, with a high elevation and slope and with less vegetation showed higher sediment load and water yield than the sub-basins with gentle slope and with high natural vegetation cover. The sub-basins 10, 4, and 1 showed high water yield availability compared to basins 2, 3, 5, 6, 7, 8, 9. This may be the result of vegetation differences. However, contained less sediment load than basins 14, 11, 12, and 13. The main objective was to quantify the significant changes affecting catchment and sub-catchment areas, to have a better understanding of the management plan regarding land use land cover. The simulated data was further projected to prediction using machine algorithms (autoregressive integrated moving average) model for precipitation prediction, and (seasonal autoregressive integrated moving average with exogenous factors) model to predict the sediment yield and water yield in the catchment to 2060.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3