Prediction of breakthrough extruding force in large-scale extrusion process using artificial neural networks

Author:

Wei Wei12,Yuan Chaolong12,Wu Rendong12ORCID,Jiao Wei12

Affiliation:

1. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, P.R. China

2. Department of Mechanical Engineering, Tsinghua University, Beijing, P. R. China

Abstract

Accurate prediction of breakthrough extruding force is very important for extrusion production, especially for the large-scale extrusion process, which directly affects the production costs and safety. In this paper, based on the production data of the 360-million-newton-tonnage extruding machine, an artificial neural network (ANN) algorithm is used to establish the breakthrough extruding force prediction model for the large-scale extrusion process, and the calculation results are validated. Results show that the proposed model has high accuracy, and the average relative error between the predicted and experimental values is only 1.79%. Further, problems that are difficult to quantitative analyze such as die wear and glass powder residue in actual production, which can be regarded as “noises,” are studied. Finally, the model presented is compared with the traditional finite element (FE) model. The accuracy of the ANN model is 10.2 times that of the FE model. Thus, the model established in the study fully considers the difference between actual production and theoretical analysis and provides an effective method for accurately predicting the breakthrough extruding force.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3