Prediction of Recrystallization Structure of 2A12 Aluminum Alloy Pipe Extrusion Process Based on BP Neural Network

Author:

Jiang Haishun12,Wu Rendong12,Yuan Chaolong12,Jiao Wei12,Chen Lingling12,Zhou Xingyou12

Affiliation:

1. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, Beijing 100084, China

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Abstract

2A12 aluminum alloy is a high-strength aerospace alloy. During its extrusion process, the extrusion process parameters have a great impact on the microstructure evolution of the extruded products. There are three extrusion process parameters controlled in the actual project, which are the initial temperature of billet, the initial temperature of die and the extrusion speed. Combined with a back propagation (BP) neural network and finite element method (FEM) simulation, based on the constitutive equation and recrystallization evolution process of 2A12 aluminum alloy, this paper establishes a prediction model for the grain size of extruded pipe by these three extrusion process parameters. This paper used a 35MN extruding machine for a production verification of 2A12 pipe. The results show that the predicted grain size is 3% smaller than the actual size.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference26 articles.

1. Effects of Deformation Ratio above Recrystallizaton Temperature on Microstructure and Properties of 2A12 Aluminum Alloy;Zhang;Appl. Mech. Mater.,2012

2. Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States;Chen;J. Mater. Eng. Perform.,2015

3. A review on mechanical properties of stir cast Al-2024 metal matrix composites;Chandla;Adv. Mater. Process. Technol.,2022

4. Effect of extrusion temperature on microstructure and properties of 2A12 aluminium alloy;Wang;Heat Treat. Met.,2020

5. Strengthening behavior of Al–Cu–Mg alloy sheet in hot forming–quenching integrated process with cold–hot dies;Fan;Mater. Des.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3