Affiliation:
1. School of Aeronautic Science and Engineering, Beihang University, Beijing, China
Abstract
In order to solve the problem that the existing reinforcement learning algorithm is difficult to converge due to the excessive state space of the three-dimensional path planning of the unmanned aerial vehicle, this article proposes a reinforcement learning algorithm based on the heuristic function and the maximum average reward value of the experience replay mechanism. The knowledge of track performance is introduced to construct heuristic function to guide the unmanned aerial vehicles’ action selection and reduce the useless exploration. Experience replay mechanism based on maximum average reward increases the utilization rate of excellent samples and the convergence speed of the algorithm. The simulation results show that the proposed three-dimensional path planning algorithm has good learning efficiency, and the convergence speed and training performance are significantly improved.
Funder
National Natural Science Foundation of China
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献