Sunitinib, a Small-Molecule Receptor Tyrosine Kinase Inhibitor, Suppresses Neointimal Hyperplasia in Balloon-Injured Rat Carotid Artery

Author:

Ishii So1,Okamoto Yoshihisa12,Katsumata Harumi1,Egawa Seiko3,Yamanaka Daisuke1,Fukushima Makoto1,Minami Shiro12

Affiliation:

1. Department of Bioregulation, Nippon Medical School, Kawasaki, Kanagawa, Japan

2. Division of Endocrinology, Diabetology and Atherosclerosis Medicine, Department of Internal Medicine, Nippon Medical School Musashi-kosugi Hospital, Kawasaki, Kanagawa, Japan

3. Department of Molecular Pathology, Nippon Medical School, Kawasaki, Kanagawa, Japan

Abstract

The migration and proliferation of vascular smooth muscle cells (VSMCs) induced by growth factors play a critical role in in-stent stenosis after percutaneous coronary intervention (PCI). The present study tested the hypothesis that sunitinib malate (sunitinib), a tyrosine kinase inhibitor of multiple receptors for growth factors, can reduce neointimal formation after arterial injury in vivo and sought to reveal the underlying mechanism in vitro. Male Wistar rats with balloon-injured carotid arteries were administered either sunitinib or a vehicle orally for 2 weeks. Sunitinib significantly inhibited neointimal hyperplasia relative to control by reducing active cell proliferation. In cultured human aortic smooth muscle cells (HASMCs), sunitinib significantly inhibited platelet-derived growth factor (PDGF)-induced increases of DNA synthesis, cell proliferation, and migration relative to controls as evaluated by [3H] thymidine incorporation, cell number, and the Boyden chamber assay, respectively. Immunoblot analyses showed that sunitinib suppressed phosphorylation of PDGF-BB inducible extracellular signal-regulated kinase and autophosphorylation of PDGF β-receptor, which are the key signaling steps involved in HASMC activation. These results indicate that sunitinib inhibits neointimal formation after arterial injury by suppressing VSMC proliferation and migration presumably through inactivation of PDGF signaling. As such, it may be a potential therapeutic agent, which targets arterial restenosis after PCI.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3