A Model of Blood Component–Heart Interaction in Cardiac Ischemia–Reperfusion Injury using a Langendorff-Based Ex Vivo Assay

Author:

Muessig Johanna M.1ORCID,Kaya Sema1,Moellhoff Luise1,Noelle Johanna1,Hidalgo Pareja Leonie1,Masyuk Maryna1,Gerdes Norbert1ORCID,Pernow John2,Kelm Malte13,Jung Christian1

Affiliation:

1. Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany

2. Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

3. CARID, Cardiovascular Research Institute Duesseldorf, Düsseldorf, Germany

Abstract

Introduction: Myocardial infarction is one of the leading causes of morbidity and mortality worldwide. Cellular interactions of red blood cells (RBCs) and platelets with endothelial cells and cardiomyocytes play a crucial role in cardiac ischemia/reperfusion (I/R) injury. However, addressing the specific impact of such cell-to-cell interactions in commonly employed in vivo models of cardiac I/R injury is challenging due to overlap of neuronal, hormonal, and immunological pathways. This study aimed to refine a Langendorff-based ex vivo transfer model to evaluate the impact of specific blood components on cardiac I/R injury. Material and methods: Murine whole blood, defined murine blood components (RBCs, platelet-rich plasma [PRP], and platelet-poor plasma [PPP], respectively) as well as human RBCs were loaded to the coronary system of isolated murine hearts in a Langendorff system before initiating global ischemia for 40 minutes. Following 60 minutes of reperfusion with Krebs Henseleit Buffer, left ventricular function and coronary flow were assessed. Infarct size was determined by specific histological staining following 120 minutes of reperfusion. Results: Loading of murine whole blood to the coronary system of isolated murine hearts at the beginning of 40 minutes of global ischemia improved left ventricular function after 60 minutes of reperfusion and reduced the infarct size in comparison to buffer-treated controls. Similarly, isolated murine RBCs, PRP, and PPP mediated a protective effect in the cardiac I/R model. Furthermore, human RBCs showed a comparable protective capacity as murine RBCs. Conclusion: This Langendorff-based transfer model of cardiac I/R injury is a feasible, time-, and cost-effective model to evaluate the impact of blood components on myocardial infarction. The presented method facilitates loading of blood components of genetically modified mice to murine hearts of a different mouse strain, thus complementing time- and cost-intensive chimeric models and contributing to the development of novel targeted therapies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine,Pharmacology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3