Analysis of Tempering Stresses in Metal-Ceramic Disks

Author:

DeHoff P.H.1,Anusavice K.J.2,Vontivillu S.B.1

Affiliation:

1. Department of Mechanical Engineering & Engineering Science, College of Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223

2. Department of Dental Biomaterials, College of Dentistry, University of Florida, Gainesville, FL 32610-0446

Abstract

Previous studies showed that residual compressive stresses induced by thermal tempering retarded the growth of surface cracks in bilayered porcelain disks. The objectives of the present study were: (1) to determine whether thermal tempering by air blasting reduces the length of cracks induced by microhardness indentation in metal-ceramic disks, and (2) to use visco-elastic finite element analyses to calculate transient and residual stresses in metal-ceramic disks. Ni-Cr-Be disks, 16 mm in diameter and 0.3 mm in thickness, were prepared with a 0.5-mm-thick layer of opaque porcelain and a 1.5-mm-thick layer of body porcelain. Metal-porcelain combinations were selected to provide a range of thermal contraction mismatch values. The disks were fired to the maturing temperature of body porcelain and then were subjected to three cooling procedures: (1) slow cooling in a furnace (SC), (2) cooling in air (FC), and (3) air tempering (T) by blasting the surface of the body porcelain with compressed air. The lengths of cracks induced in the surface of the body porcelain by a microhardness indenter were measured immediately after indentation at 20 points along diametral lines. The results of Tukey's multiple-contrast analyses indicated that the mean crack lengths of air-tempered specimens were significantly smaller (p ≤ 0.05) than the crack lengths of the fast-cooled and slow-cooled groups. Except for one case, there were no statistically significant differences in the mean crack lengths between FC and SC specimens independent of thermal contraction mismatch. Residual tensile stresses were calculated for SC and FC specimens for all thermal contraction mismatch cases, with the largest values being associated with combinations containing the body porcelain with the smaller contraction coefficient. Calculations by use of the model confirmed that tempering induces large residual compressive stresses in the surface of body porcelain for all of the thermal contraction mismatch cases included in this study.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3