Influence of Tempering Method on Residual Stress in Dental Porcelain

Author:

Asaoka K.1,Kuwayama N.1,Tesk J.A.2

Affiliation:

1. Department of Dental Engineering, School of Dentistry, Tokushima University, 3-Kuramoto-cho, Tokushima, 770, Japan

2. Dental and Medical Materials, Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Abstract

The porcelain component of a porcelain-fused-to-metal restoration is strengthened by residual (tempering) stresses which are induced by cooling procedures followed in dental laboratories. The thermophysical properties of materials and cooling rate are the main factors which determine the residual stress. In this paper, the temperatures in the midplane of body-porcelain disks were measured from a heat-soak temperature (1000°C) to room temperature during two different cooling procedures: slow cooling in air and forced-air cooling. Experimental results approximated exponential cooling wherein the cooling rates could be represented by a linear equation of temperature. Residual stresses, as affected by the tempering method and thickness of a porcelain disk, were calculated by computer simulation for regions away from the edges. The following temperature-dependent factors were incorporated into the simulation: elastic modulus, viscosity, and coefficient of thermal expansion. The cooling rate dependencies of the glass transition temperature and the temperature distribution during cooling were also included. The cooling rates used in this simulation were derived from the tempering data. The agreement between development of transient and residual stresses—calculated by computer simulation for various cooling methods, and the tendency toward failures of porcelain disks subjected to the tempering processes-was examined. Simulated residual stresses were also in good agreement with those measured by the indentation fracture method of Marshall and Lawn (1977) and Anusavice et al. (1989).

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3