Temporal Control of WNT Activity Regulates Tooth Number in Fish

Author:

Shim J.S.1ORCID,Kim B.2,Park H.C.2,Ryu J.J.3

Affiliation:

1. Department of Prosthodontics, Korea University Ansan Hospital, Ansan-si, Republic of Korea

2. Graduate School of Medicine, Korea University, Ansan-si, Republic of Korea

3. Department of Prosthodontics Korea University Anam Hospital, Seoul, Republic of Korea

Abstract

Wnts determine cell polarity, cell proliferation, and cell differentiation during embryogenesis and play an essential role during tooth development initiation and morphogenesis. Wnt/β-catenin signaling has a time-dependent role in development because various signaling molecules that mutually interact are involved in the pathway, and tight regulation of the pathway is essential for normal development. Studies investigating how the Wnt/β-catenin signaling pathway controls the different stages of tooth development are rare. Specifically, the effects of Wnt/β-catenin signaling loss of function on different stages of tooth development are currently unknown. Here, we report the stage-dependent role of Wnt/β-catenin signaling in tooth development. In vivo loss and gain of function of Wnt/β-catenin signaling were implemented through the genetic overexpression of DKK1 with heat shock–inducible transgenic models and the pharmacologic inhibition of β-catenin destruction complex formation in zebrafish, respectively. We demonstrated that transient inhibition of Wnt/β-catenin signaling interrupted tooth development in a stage-dependent manner and conditional activation of Wnt/β-catenin signaling during 4V morphogenesis inhibited the development of 3V. These findings suggest that Wnt/β-catenin signaling plays an important role in the morphogenesis of teeth and the initiation of sequential tooth development in a stage-dependent manner.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3