Triacrylamide-Based Adhesives Stabilize Bonds in Physiologic Conditions

Author:

de Lucena F.S.1,Lewis S.H.2,Fugolin A.P.P.2,Furuse A.Y.1,Ferracane J.L.2,Pfeifer C.S.2ORCID

Affiliation:

1. Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil

2. Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA

Abstract

In this study, an acrylamide-based adhesive was combined with a thiourethane-based composite to improve bond stability and reduce polymerization stress, respectively, of simulated composite restorations. The stability testing was conducted under physiologic conditions, combining mechanical and bacterial challenges. Urethane dimethacrylate was combined with a newly synthesized triacrylamide (TMAAEA) or HEMA (2-hydroxyethyl-methacrylate; control) to produce a 2-step total-etch adhesive system. Methacrylate-based composites (70 wt% silanized filler) were formulated, containing thiourethane oligomers at 0 (control) or 20 wt%. Standardized preparations in human third molars were restored; then, epoxy replicas were obtained from the occlusal surfaces before and after 7-d storage in water or with Streptococcus mutans biofilm, which was tested after storage in an incubator (static) or the bioreactor (mechanical challenge). Images were obtained from the replicas (scanning electron microscopy) and cross sections of the samples (confocal laser scanning microscopy) and then analyzed to obtain measurements of gap, bacterial infiltration, and demineralization. Microtensile bond strength of specimens stored in water or biofilm was assessed in 1-mm2 stick specimens. Data were analyzed with analysis of variance and Tukey’s test (α = 0.05). HEMA-based materials had greater initial gap measurements, indicating more efficient bonding for the acrylamide materials. When tested in water, the triacrylamide-based adhesive had smaller gaps in the incubator or bioreactor. In the presence of biofilm, there was less difference among materials, but the acrylamide/thiourethane combination led to statistically lower gap formation in the bioreactor. HEMA and TMAAEA-based adhesives produced statistically similar microtensile bond strengths after being stored in water for 7 d, but after the same period with biofilm-challenged specimens, the TMAAEA-based adhesives were the only ones to retain the initial bond strength values. The use of a stable multiacrylamide-based adhesive led to the preservation of the resin-dentin bonded interface after a physiologically relevant challenge. Future studies will include a multispecies biofilm model.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3