Self -etching Dentin Primers Containing Phenyl-P

Author:

Chigira H.1,Yukitani W.1,Hasegawa T.1,Manabe A.1,Itoh K.1,Hayakawa T.2,Debari K.3,Wakumoto S.1,Hisamitsu H.1

Affiliation:

1. Department of Operative Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ward, Tokyo 145, Japan

2. Department of Dental Materials, Nihon University School of Dentistry at Matsudo, 2-870 Sakaecho-nishi, Matsudo City, Chiba 271, Japan

3. Department of Oral Anatomy, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ward, Tokyo 142, Japan

Abstract

The dentin bonding efficacies of two commercial dentin bonding systems and experimental self-etching dentin primers composed of methacryloxyethyl hydrogen phenyl phosphate (Phenyl-P) and either hydroxyethyl methacrylate (HEMA) or glyceryl methacrylate (GM, 2,3-dihydroxypropyl methacrylate) were examined. The wall-to-wall polymerization contraction gap width of a commercial light-activated resin composite in a cylindrical dentin cavity and the tensile bond strength to a flat dentin surface were measured. Changes in dentin hardness were determined by Micro Vickers Hardness measurement, and an SEM observation was performed after priming. Formation of a contraction gap was completely prevented by the application of Phenyl-P diluted in HEMA or GM solution combined with a commercial dentin bonding agent, although gap formation was evident in nearly half of the specimens with both commercial dentin bonding systems. The mean tensile bond strengths of the tested groups varied from 16.3 to 20.7 MPa, and there were no significant differences between groups. Based on the measurement of Micro Vickers Hardness and SEM observation after priming, a slight reduction in dentin hardness was observed. However, this reduction in dentin hardness due to self-etching priming did not significantly correlate with either contraction gap width or tensile bond strength.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3