Dentin Sialophosphoprotein–derived Proteins in the Dental Pulp

Author:

Yamamoto R.1,Oida S.1,Yamakoshi Y.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama, Japan

Abstract

Porcine dentin sialophosphoprotein (DSPP), the most abundant noncollagenous protein in dentin, is critical for proper mineralization of tooth dentin. DSPP is processed by proteases into 3 major domains: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). There are at least 2 mRNA variants expressed from the Dspp gene: one encodes the full-length DSPP protein (DSP+DGP+DPP); the other encodes only DSP. The shorter transcript is generated through the use of a polyadenylation signal within intron 4, immediately following the DSP coding region (DGP and DPP are encoded by exon 5). We fractionated DSPP-derived proteins from the dental pulp of developing porcine incisors using heparin chromatography. DSP was identified, but little DPP could be detected in any fractions. BMP-1 digestion of DSPP-derived proteins extracted from dental pulp did not generate new DPP bands on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (indicating an absence of intact DSPP), although the results suggested another BMP-1 cleavage site within DSP. We further purified DSPP-derived protein by reversed-phase high-performance liquid chromatography. Its amino acid composition was similar to DSP. Expression of the full-length Dspp mRNA by quantitative real-time polymerase chain reaction analysis was significantly higher in odontoblasts than in pulp, while expression of the DSP-only mRNA was almost equal in odontoblasts and in the body of the pulp. Expression of the full-length Dspp mRNA was also significantly higher than the expression of DSP-only mRNA in odontoblasts. Both the full-length and the DSP-only Dspp mRNA showed only trace expression in the pulp tip. We conclude that use of the 3′ polyadenylation signal in exon 5 predominates in fully differentiated odontoblasts, while both polyadenylation signals are used throughout odontoblast differentiation.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3