Progress in the Application of Biomimetic Mineralization for Tooth Repair

Author:

Tang Zhenhang123ORCID,Shan Songzhe123,Chen Zhuo123ORCID,Shao Changyu123ORCID

Affiliation:

1. Clinical Research Center for Oral Diseases of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China

2. Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China

3. Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China

Abstract

The tooth, including enamel and dentin, is a prominent biomineral that is produced by the biomineralization of living organisms. Although the mechanical performance of the tooth is outstanding, caries easily develop in a complex oral environment. The analysis of the chemical composition and the relationship between the mechanical properties and the structure is of great importance in solving caries. In this review, the multilevel structure and mechanical properties of enamel and dentin are briefly introduced, along with caries formation and the limitations of clinical dental restoration. Furthermore, the progress of the application of a wide range of biomimetic strategies for tooth remineralization is highlighted, including the use of calcium phosphate ionic clusters to construct the mineralization front, ensuring the oriented epitaxial growth of enamel crystals and replicating the complex structure of the enamel. Moreover, compared with the current clinical treatment, in which the resin composite and glass ionomer cement are the main repair materials and the high incidence of secondary caries leads to imperfect restorations, the remineralization tactics could achieve excellent repair effectiveness in reconstructing the complicated structure, restoring mechanical strength and gaining permanent repair. A basic understanding of enamel and dentin, their potential for restoration, and hopeful prospects for tooth repair that can be applied in the clinical setting, not just in the laboratory, is provided by this review.

Funder

the National Science Foundation for Young Scientists of China

the Pioneer and Leading Goose R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3