Graphene Nanocoating: High Quality and Stability upon Several Stressors

Author:

Rosa V.12ORCID,Malhotra R.1ORCID,Agarwalla S.V.1,Morin J.L.P.2,Luong-Van E.K.1,Han Y.M.3,Chew R.J.J.1,Seneviratne C.J.4,Silikas N.5,Tan K.S.12,Nijhuis C.A.6,Castro Neto A.H.2

Affiliation:

1. Faculty of Dentistry, National University of Singapore, Singapore

2. Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore

3. Department of Chemistry, National University of Singapore, Singapore

4. National Dental Centre Singapore, SingHealth, Singapore

5. Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom

6. Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Enschede, Netherlands

Abstract

Titanium implants present 2 major drawbacks—namely, the long time needed for osseointegration and the lack of inherent antimicrobial properties. Surface modifications and coatings to improve biomaterials can lose their integrity and biological potential when exposed to stressful microenvironments. Graphene nanocoating (GN) can be deposited onto actual-size dental and orthopedic implants. It has antiadhesive properties and can enhance bone formation in vivo. However, its ability to maintain structural integrity and quality when challenged by biologically relevant stresses remains largely unknown. GN was produced by chemical vapor deposition and transferred to titanium via a polymer-assisted transfer technique. GN has high inertness and did not increase expression of inflammatory markers by macrophages, even in the presence of lipopolysaccharides. It kept high coverage at the top tercile of tapered dental implant collars after installation and removal from bone substitute and pig maxilla. It also resisted microbiologically influenced corrosion, and it maintained very high coverage area and quality after prolonged exposure to biofilms and their removal by different techniques. Our findings show that GN is unresponsive to harsh and inflammatory environments and that it maintains a promising level of structural integrity on the top tercile of dental implant collars, which is the area highly affected by biofilms during the onset of implant diseases. Our findings open the avenues for the clinical studies required for the use of GN in the development of implants that have higher osteogenic potential and are less prone to implant diseases.

Funder

Ministry of Education - Singapore

national university health system

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3