Wear and Marginal Breakdown of Composites with Various Degrees of Cure

Author:

Ferracane J.L.1,Mitchem J.C.1,Condon J.R.1,Todd R.2

Affiliation:

1. Department of Biomaterials and Biomechanics

2. Department of Removable Prosthodontics, Oregon Health Sciences University, 611 S.W. Campus Drive, Portland, Oregon 97201

Abstract

Loss of anatomical form due to wear has been cited as one factor limiting the clinical use of posterior composites. The physical properties and possibly the wear resistance of composite are influenced by the extent to which it is cured. The aim of this study was to vary degree of conversion (DC) in composites to test the hypothesis that resistance to wear and marginal breakdown could be improved by enhanced curing. A light-cured hybrid composite containing a 50% Bis-GMA/50% TEGDMA resin and 62 vol% of strontium glass (1 to 2 μm) with microfill silica was formulated (Bisco). Composite was placed into two 2.5-mm-diameter cylindrical holes in Co-Cr teeth replacing first and second molars in the mandibular dentures of 50 edentulous patients. The composites were light-cured for different time periods (9 s, 12 s, 25 s, 40 s, and 40 s + 10 min at 120°C) and then polished. The microfill Heliomolar was also tested. DC (%) was measured by FTIR and ranged between 55% for 9 s of light-curing and 67% for 40 s of light-curing followed by heat application. Impressions were evaluated at baseline, 6 mo, 1 yr, and 2 yrs. Stone casts were evaluated independently by three observers to determine the % of the total margin exhibiting breakdown. Epoxy replicas were measured with a profilometer for wear. Wear of the hybrid composite at 2 yrs ranged from a high of 144 μm with 9 s of light-curing to a low of 36 μm with 40 s of light-curing followed by heat. Heliomolar exhibited from 11 to 16 μm of wear at 2 yrs. There was a strong negative correlation (r2 = 0.91) between the degree of cure and the abrasive wear of the hybrid composites. Marginal breakdown was negligible for the hybrids, and was reduced for the microfill from 40% to 15% of the margin by heat treatment. This study showed that the resistance to abrasive wear of a dental composite could be improved by enhancement of its degree of conversion.

Publisher

SAGE Publications

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3