Comparison of Intraoral Bone Regeneration with Iliac and Alveolar BMSCs

Author:

Wang F.1,Zhou Y.2,Zhou J.2,Xu M.2,Zheng W.2,Huang W.1,Zhou W.3,Shen Y.3,Zhao K.4,Wu Y.4,Zou D.5ORCID

Affiliation:

1. Department of Oral Implantology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China

2. Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China

3. Second Dental Clinic, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China

4. Second Dental Clinic, Department of Oral Implantology, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China

5. Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China

Abstract

This study compared the osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) of iliac and alveolar origins (I-BMSCs and Al-BMSCs, respectively), which were transplanted in combination with β tricalcium phosphate (β-TCP) in peri-implant bone defects to investigate the osseointegration between dental implants and tissue-engineered bone in dogs. Specifically, I-BMSCs and Al-BMSCs were cultured, characterized, and seeded on β-TCP and subjected to immunoblotting analyses and alkaline phosphatase activity assays. Subsequently, these cell-seeded scaffolds were implanted into defects that were freshly generated in the mandibular premolar areas of 4 dogs. The defects were covered with β-TCP + Al-BMSCs ( n = 6), β-TCP + I-BMSCs ( n = 6), or β-TCP ( n = 6) or served as the blank control ( n = 6). After healing for 12 wk, the formation and mineralization of new bones were assessed through micro–computed tomographic, histologic, and histomorphometric analyses, and bone-to-implant contacts were measured in the specimens. It was evident that in this large animal model, I-BMSCs and Al-BMSCs manifested similarly strong osteogenic potential, as significantly more new bone was formed in the Al-BMSC and I-BMSC groups than otherwise ( P < 0.01). Therefore, Al-BMSCs are emerging as an efficient alternative for autologous mesenchymal stem cells in regenerative dental and maxillofacial therapies. I-BMSCs, if not restricted in their bioavailability, can also be of great utility in bone tissue–engineering applications.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3