Affiliation:
1. The University of Michigan School of Dentistry, 1011 N. University Avenue, Ann Arbor, Michigan 48109-1078
Abstract
Ten dental casting alloys were tested for alloy-element release into cell-culture medium, and this release was related to alloy composition, alloy microstructure, and alloy cytotoxicity (previously determined). Cell-culture medium was analyzed for alloy elements by flame atomic absorption. Concentrations of elements in the medium were normalized by dividing them by their atomic abundance in the alloy, giving element medium-alloy ratios (EMA ratios). Results showed that Au, In, and Pd generally did not dissolve into the medium, but that Ag, Cd, Cu, Ga, Ni, and Zn frequently dissolved. Comparison of EMA ratios for Ag, Cu, and Zn showed that each element retained a behavioral identity in diverse metallurgical environments, but that these environments influenced the release behavior to some degree. Some EMA ratios in multiphase alloys were greater than those in solid solutions, and EMA ratios showed great diversity within all the alloys. Nominal composition seemed to be of little value in the prediction of metal release unless the composition supported multiple-phase formation. In addition, release of alloy elements did not, in itself, completely predict alloy cytotoxicity measured previously. However, cytotoxicity was associated with metal release in each case. The commercial alloys used in this study exhibited more complex and less predictable release behavior than did the simpler ternary alloy systems used by previous investigators. It is believed that the use of commercial preparations is necessary for their in vivo behavior to be modeled.
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献