Surface Characterization of Amalgams Using X-ray Photoelectron Spectroscopy

Author:

Hanawa T.1,Takahashi H.2,Ota M.3,Pinizzotto R.F.4,Ferracane J.L.5,Okabe T.5

Affiliation:

1. Department of Dental Materials, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246, Department of Dental Materials and Engineering, School of Dentistry, Hokkaido University, Sapporo 060, Japan

2. Department of Analytical Chemistry I, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

3. Department of Dental Materials and Engineering, School of Dentistry, Hokkaido University, Sapporo 060, Japan

4. Department of Physics, North Texas State University, Denton, Texas 76203

5. Department of Dental Materials, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas 75246

Abstract

This study is the first to report on the use of x-ray photoelectron spectroscopy (XPS or ESCA) for studying the surface films (less than 10 nm thick) of aged amalgams. The concentrations and electron binding energies of the elements on the surfaces of four different amalgams aged for 20 min, one day, seven days, and 30 days were determined quantitatively. For comparison, the bulk compositions of the amalgams aged for seven days were also determined after removal of approximately 5 nm of material from the surface by argon-ion-sputtering.The XPS data revealed that the surface films of aged zinc-containing amalgams were not a simple oxide but were primarily composed of a (hydrated) tin and zinc oxy-hydroxide, whereas, in the zinc-free amalgams, the surface films were primarily a tin oxide. The concentration of mercury in this thin surface film after aging was depleted. This suggests that tin and/or zinc preferentially diffused to the surface and combined with oxygen, forming a surface film and diluting the mercury concentration in the surface. Another probable explanation for the depleted mercury is that a minimal amount of mercury in the surface film evaporated during the aging.

Publisher

SAGE Publications

Subject

General Dentistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3