Evaluation of Aging Effects of Zinc Oxide on the Optical Properties of Porous Silicon-Zinc Oxide Heterojunction Photodetector Device

Author:

Karaçam Safiye1ORCID,Gör Bölen Meltem2ORCID

Affiliation:

1. ERZURUM TECHNICAL UNIVERSITY

2. ERZURUM TEKNİK ÜNİVERSİTESİ

Abstract

Porous silicon is very important for integrated technology because of its many superior properties, such as suitability for mass production, easy and controlled production, and adjustable electrical and optical properties. Semiconductors with metal oxides, such as indium oxide, indium tin oxide, tin oxide, and zinc oxide, are highly preferred in optical devices. Among these metal oxides, zinc oxide is preferred for photodetectors because of its stable crystal structure and large exciton binding energy of 60 meV. Researchers have conducted studies on photodetectors with porous silicon-zinc oxide heterojunction structures. The importance of the stable operation of devices has been emphasized. Therefore, in this study, a porous silicon-based zinc oxide heterojunction structure suitable for photodetector production was formed, and the effect of aging on zinc oxide was investigated over time. As a result of the investigation, it was observed that the intensity decreased approximately 2.5 times at the end of 365 days owing to the aging of zinc oxide. In addition, UV spectroscopy measurements were performed to investigate the optical properties that affect their operation as photodetectors. Because the PS-ZnO heterojunction functions as a detector in the UV region, the absorption and reflectivity of the PS-ZnO heterojunction were investigated, especially in the UV region. From the measurements, it was observed that aging decreased absorption and increased reflectance. These findings underscore the negative impact of aging on photodetector performance.

Funder

TUBİTAK,Erzurum Technical University

Publisher

Black Sea Journal of Engineering and Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3