Installing computational social science: Facing the challenges of new information and communication technologies in social science

Author:

Heiberger Raphael H.1,Riebling Jan R.2

Affiliation:

1. Institute for Sociology, University of Bremen, Bremen, Germany

2. Otto-Friedrich-Universität Bamberg, Bamberg, Germany

Abstract

Today’s world allows people to connect over larger distances and in shorter intervals than ever before, widely monitored by massive online data sources. Ongoing worldwide computerization has led to completely new opportunities for social scientists to conceive human interactions and relations in unknown precision and quantities. However, the large data sets require techniques that are more likely to be found in computer and natural sciences than in the established fields of social relations. In order to facilitate the participation of social scientists in an emerging interdisciplinary research branch of “computational social science,” we propose in this article the usage of the Python programming language. First, we carve out its capacity to handle “Big Data” in suitable formats. Second, we introduce programming libraries to analyze large networks and big text corpora, conduct simulations, and compare their performance to their counterparts in the R environment. Furthermore, we highlight practical tools implemented in Python for operational tasks like preparing presentations. Finally, we discuss how the process of writing code may help to exemplify theoretical concepts and could lead to empirical applications that gain a better understanding of the social processes initiated by the truly global connections of the Internet era.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Within-session chasing of losses and wins in an online eCasino;Scientific Reports;2024-09-02

2. Analyse großer Netzwerke;Netzwerkforschung;2024

3. Neuere Entwicklungen der deutschsprachigen soziologischen Netzwerkforschung seit der Jahrtausendwende;Netzwerkforschung;2024

4. Applying Machine Learning in Sociology: How to Predict Gender and Reveal Research Preferences;KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie;2022-05-19

5. Big Data;Handbuch Methoden der empirischen Sozialforschung;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3