The Dirichlet Multinomial Distribution as a Magazine Exposure Model

Author:

Leckenby John D.1,Kishi Shizue2

Affiliation:

1. Department of Advertising, University of Illinois at Urbana-Champaign.

2. Nagoya University of Commerce and Business Administration, Nagoya, Japan.

Abstract

The authors examine methods by which the Dirichlet multinominal distribution (DMD) can be parameterized in the modeling of magazine media exposure distributions. The performance of alternative methods of parameter estimation of the DMD is compared with that of three other exposure distribution models. Performance is assessed in terms of accuracy of predicted versus observed distributions on 515 tabulated schedules derived from 1979 SMRB data. Results show the DMD is superior in performance to all other models tested, including the popular beta binomial distribution (BBD).

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Reference38 articles.

1. ADMOD: An Advertising Decision Model

2. Advertising Age (1980), cover of September 11 issue.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the fast computation of the Dirichlet-multinomial log-likelihood function;Computational Statistics;2022-12-26

2. Influence of IMC on Communication Dissemination;Integrated Marketing Communications for Public Policy;2022

3. Toward an Efficient Computation of Log-Likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering;Unsupervised and Semi-Supervised Learning;2019-08-14

4. Bayesian coverage optimization models;Journal of Combinatorial Optimization;2008-06-29

5. MEDIA PLANNING PROBLEMS FOR JAPANESE NEWSPAPER CONSIDERING PAGE SPACE;Transactions of the Operations Research Society of Japan;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3