Does design matter? Systematic evaluation of the impact of analytical choices on effect estimates in observational studies

Author:

Madigan David1,Ryan Patrick B.2,Schuemie Martijn3

Affiliation:

1. Professor and Chair, Department of Statistics, Columbia University, 1255 Amsterdam Ave., New York, NY 10027, USA

2. Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD and Janssen Research and Development LLC, Titusville, NJ, USA

3. Observational Medical Outcomes Partnership, Foundation for the National Institutes of Health, Bethesda, MD and Department of Medical Informatics, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands

Abstract

Background: Clinical studies that use observational databases, such as administrative claims and electronic health records, to evaluate the effects of medical products have become commonplace. These studies begin by selecting a particular study design, such as a case control, cohort, or self-controlled design, and different authors can and do choose different designs for the same clinical question. Furthermore, published papers invariably report the study design but do not discuss the rationale for the specific choice. Studies of the same clinical question with different designs, however, can generate different results, sometimes with strikingly different implications. Even within a specific study design, authors make many different analytic choices and these too can profoundly impact results. In this paper, we systematically study heterogeneity due to the type of study design and due to analytic choices within study design. Methods and findings: We conducted our analysis in 10 observational healthcare databases but mostly present our results in the context of the GE Centricity EMR database, an electronic health record database containing data for 11.2 million lives. We considered the impact of three different study design choices on estimates of associations between bisphosphonates and four particular health outcomes for which there is no evidence of an association. We show that applying alternative study designs can yield discrepant results, in terms of direction and significance of association. We also highlight that while traditional univariate sensitivity analysis may not show substantial variation, systematic assessment of all analytical choices within a study design can yield inconsistent results ranging from statistically significant decreased risk to statistically significant increased risk. Our findings show that clinical studies using observational databases can be sensitive both to study design choices and to specific analytic choices within study design. Conclusion: More attention is needed to consider how design choices may be impacting results and, when possible, investigators should examine a wide array of possible choices to confirm that significant findings are consistently identified.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3