Innovate and Validate: Design-Led Simulation Optimization to Test Centralized Registration Feasibility in a Multispecialty Clinic

Author:

Hosseini Maryam1ORCID,Gittler Alice M.2ORCID,Hoak Michael1,Cogswell Jonathan3,Khasawneh Mohammad T.2

Affiliation:

1. EwingCole, New York, NY, USA

2. Binghamton University, Binghamton, NY, USA

3. Northwell Health, New York, NY, USA

Abstract

Objective: This study utilizes a design-led simulation-optimization process (DLSO) to refine a hybrid registration model for a free-standing outpatient clinic. The goal is to assess the viability of employing DLSO for innovation support and highlight key factors influencing resource requirements. Background: Manual registration in healthcare causes delays, impacting patient services and resource allocation. This study addresses these challenges by optimizing a hybrid centralized registration and adopting technology for efficiency. Method: An iterative methodology with simulation optimization was designed to test a proof of concept. Configurations of four and five registration options within a hybrid centralized system were explored under preregistration adoption rates of 30% and 50%. Three self-service kiosks served as a baseline during concept design and test fits. Results: Centralized registration accommodated a daily throughput of 2,000 people with a 30% baseline preregistration rate. Assessing preregistration impact on seating capacity showed significant reductions in demand and floor census. For four check-in stations, a 30%–50% preregistration increase led to a 32% seating demand reduction and a 26% decrease in maximum floor census. With five stations, a 50% preregistration reduced seating demand by 23% and maximum floor census by 20%. Conclusion: Innovating introduces complexity and uncertainties requiring buy-in from diverse stakeholders. DLSO experimentation proves beneficial for validating novel concepts during design.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3