Modeling and simulation of oncology clinic operations in discrete event system specification

Author:

Alvarado Michelle M1,Cotton Tanisha G1,Ntaimo Lewis1,Pérez Eduardo2,Carpentier William R3

Affiliation:

1. Department of Industrial and Systems Engineering, Texas A&M University, USA

2. Ingram School of Engineering, Texas State University, USA

3. Baylor Scott and White Health System, USA

Abstract

Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy under limited resources, such as nurses and chemotherapy chairs. Chemotherapy is a cancer treatment method that is administered orally or intravenously at an outpatient oncology clinic. Chemotherapy patients require a treatment regimen, which is a series of appointments over several weeks or months prescribed by the oncologist. The timing of these appointments is critical to the effectiveness of the chemotherapy treatment on cancer. This motivates the need for new methods for making efficient appointment schedules and for assessing clinic operation performance from both patient and management perspectives. This work uses a classic modeling approach based on systems theory to develop a discrete event system specification (DEVS) simulation model for oncology clinic operations called DEVS-CHEMO. DEVS-CHEMO is configurable to any oncology clinic and provides several capabilities for oncology clinic managers. For example, it can simulate scheduling of chemotherapy patients, clinic resources, and the arrival process of the patients to the clinic on the day of their appointment. This model simulates oncology clinic operations as patients receive chemotherapy treatments and thus allows for assessing scheduling algorithms using both patient and management perspectives. DEVS-CHEMO has been tested and validated using historical data from a real outpatient oncology clinic and the simulation results reported in this paper provide several insights regarding oncology clinic operations management.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3