Use of machine-learning algorithms to aid in the early detection of leptospirosis in dogs

Author:

Reagan Krystle L.1ORCID,Deng Shaofeng2,Sheng Junda2,Sebastian Jamie3,Wang Zhe3ORCID,Huebner Sara N.3,Wenke Louise A.3,Michalak Sarah R.3,Strohmer Thomas2,Sykes Jane E.1

Affiliation:

1. Department of Medicine and Epidemiology, University of California–Davis, Davis, CA, USA

2. School of Veterinary Medicine, and Department of Mathematics, University of California–Davis, Davis, CA, USA

3. William R. Pritchard Veterinary Medical Teaching Hospital, University of California–Davis, Davis, CA, USA

Abstract

Leptospirosis is a life-threatening, zoonotic disease with various clinical presentations, including renal injury, hepatic injury, pancreatitis, and pulmonary hemorrhage. With prompt recognition of the disease and treatment, 90% of infected dogs have a positive outcome. Therefore, rapid, early diagnosis of leptospirosis is crucial. Testing for Leptospira-specific serum antibodies using the microscopic agglutination test (MAT) lacks sensitivity early in the disease process, and diagnosis can take >2 wk because of the need to demonstrate a rise in titer. We applied machine-learning algorithms to clinical variables from the first day of hospitalization to create machine-learning prediction models (MLMs). The models incorporated patient signalment, clinicopathologic data (CBC, serum chemistry profile, and urinalysis = blood work [BW] model), with or without a MAT titer obtained at patient intake (=BW + MAT model). The models were trained with data from 91 dogs with confirmed leptospirosis and 322 dogs without leptospirosis. Once trained, the models were tested with a cohort of dogs not included in the model training (9 leptospirosis-positive and 44 leptospirosis-negative dogs), and performance was assessed. Both models predicted leptospirosis in the test set with 100% sensitivity (95% CI: 70.1–100%). Specificity was 90.9% (95% CI: 78.8–96.4%) and 93.2% (95% CI: 81.8–97.7%) for the BW and BW + MAT models, respectively. Our MLMs outperformed traditional acute serologic screening and can provide accurate early screening for the probable diagnosis of leptospirosis in dogs.

Funder

national science foundation

Publisher

SAGE Publications

Subject

General Veterinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3