High pressure sealing characteristics of combined structure based on flexible graphite rings

Author:

Zhao Xiangyang1,Zhang Xianyong2ORCID,Li Kai2

Affiliation:

1. Sinopec Key Laboratory of cementing and completion, Sinopec Research Institute of Petroleum Engineering Co. Ltd., Beijing, China

2. School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei, China

Abstract

Seal components made of flexible graphite have excellent resistance to temperature, while sealing of high pressure fluids is unsatisfactory. The sealing behavior of flexible graphite rings is characterized by the ratio of the contact pressure to the axial pressure. The FEA results show that the lateral pressure decreases roughly linearly along the direction of the sealing path, and the lateral pressure coefficient increases with increasing axial pressure. We design a combined seal structure based on flexible graphite rings, and extract the contact pressure along two sealing paths. The results imply that the self-sealing effect is more favorable when the pressure of the sealing fluid is increased. The effect of the friction coefficient on the contact pressure is not significant, except at the beginning of the sealing path. Sealing effects are tested under the coupling condition of 350°C and 50 MPa, which verify the sealing performance under high temperature and high pressure. The comparison of the test results of “ kf” (the product of lateral pressure coefficient and friction coefficient) with those of the FEA validates the rationality of the analytical approach. The comprehensive coefficient “ kf” can be easily obtained by testing, and can be used as a key parameter for seal design.

Funder

Hubei Engineering Technology Research Center of industrial internet of things intelligent sensing

Fund of Sinopec Key Cementing and Completion Laboratory

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3