The Influence of Machining Conditions on the Orientation of Nanocrystallites and Anisotropy of Physical and Mechanical Properties of Flexible Graphite Foils

Author:

Shulyak Vladimir A.1ORCID,Morozov Nikolai S.1ORCID,Ivanov Andrei V.1ORCID,Gracheva Alexandra V.1,Chebotarev Sergei N.1,Avdeev Viktor V.1

Affiliation:

1. Department of Chemistry, Lomonosov Moscow State University, 119234 Moscow, Russia

Abstract

The physical and mechanical properties and structural condition of flexible graphite foils produced by processing natural graphite with nitric acid, hydrolysis, thermal expansion of graphite and subsequent rolling were studied. The processes of obtaining materials and changing their characteristics has been thoroughly described and demonstrated. The structural transformations of graphite in the manufacture of foils were studied by X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). A decrease in the average size of the coherent scattering regions (CSR) of nanocrystallites was revealed during the transition from natural graphite to thermally expanded graphite from 57.3 nm to 20.5 nm at a temperature of 900 °C. The rolling pressure ranged from 0.05 MPa to 72.5 MPa. The thickness of the flexible graphite foils varied from 0.11 mm to 0.75 mm, the density—from 0.70 to 1.75 g/cm3. It was shown that with an increase in density within these limits, the compressibility of the graphite foil decreased from 65% to 9%, the recoverability increased from 5% to 60%, and the resiliency decreased from 10% to 6%, which is explained by the structural features of nanocrystallites. The properties’ anisotropy of graphite foils was studied. The tensile strength increased with increasing density from 3.0 MPa (ρ = 0.7 g/cm3) to 14.0 MPa (ρ = 1.75 g/cm3) both in the rolling direction L and across T. At the same time, the anisotropy of physical and mechanical properties increased with an increase in density along L and T to 12% with absolute values of 14.0 MPa against 12.5 MPa at a thickness of 200 μm. Expressed anisotropy was observed along L and T when studying the misorientation angles of nanocrystallites: at ρ = 0.7 g/cm3, it was from 13.4° to 14.4° (up to 5% at the same thickness); at ρ = 1.3 g/cm3—from 11.0° to 12.8° (up to 7%); at ρ = 1.75 g/cm3—from 10.9° to 12.4° (up to 11%). It was found that in graphite foils, there was an increase in the coherent scattering regions in nanocrystallites with an increase in density from 24.8 nm to 49.6 nm. The observed effect can be explained by the coagulation of nanocrystallites by enhancing the Van der Waals interaction between the surface planes of coaxial nanocrystallites, which is accompanied by an increase in microstrains. The results obtained can help discover the mechanism of deformation of porous graphite foils. The obtained results can help discover the deformation mechanism of porous graphite foils. We assume that this will help predict the material behavior under industrial operating conditions of products based flexible graphite foils.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3