Descriptive parameter optimization method for energy-saving gait planning of biped robots

Author:

Meng Yun1,Lu Zhiqiang2ORCID,Wang Peipei1

Affiliation:

1. Henan Kaifeng College of Science Technology and Communication, Kaifeng, China

2. School of Artificial Intelligence, Henan University, Zhengzhou, China

Abstract

Low energy efficiency is an important factor restricting the application and development of biped robots. In this article, an energy-saving walking control method using descriptive parameter optimization to obtain the gait type with minimum energy consumption is proposed. The algorithm evaluates the energy consumed during walking considering the load torque and angular velocity of all joint actuators of the five-mass simplified model of the robot. A gait database with the step length, gait type and stability margin as the input and gait parameters and energy consumption as the output is constructed, and the gait adapted to the zero-moment point region is dynamically adjusted during walking to realize a compromise between the robot walking stability and energy consumption. In the gait parameter optimization part of the algorithm, a mapping relationship between the descriptive parameters and body trajectory is established. Through parameter sampling and inverse kinematics calculations, seeds are selected from the sample set according to the stability margin, and the gradient descent method of directional acceleration is used to approximate the minimum energy consumption under the descriptive parameters in the neighborhood of the seeds. In the gait synthesis part of the algorithm, according to the given walking task and the energy consumption-related items in the gait database, the walking trajectory with minimum energy consumption is planned. In real-time walking, the database is queried according to the planned step sequence, the gait parameters are obtained, the robot joint movement is controlled, the feedback zero-moment point is calculated from the robot foot pressure, and the database input query is adjusted according to the trajectory deviation to simultaneously achieve walking stability and reduce energy consumption. To determine the effectiveness of the algorithm, dynamic simulation experiments and real robot walking experiments are carried out. The experimental results show that our algorithm has a significant energy-saving effect. The experimental videos are available at https://github.com/xkluzq/biped-robot .

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3